New DMX3

Efficient protection up to 6300 A

AIR CIRCUIT BREAKERS | PRODUCT GUIDE

NEW DMX ${ }^{3}$ ACBs UP TO 6300 A

EFFICIENT PROTECTION AND CONTROL FOR ALL TYPE OF BUILDINGS

Llegrand

Optimized performance up to 6300 A

| $D M X^{3}$ air circuit breakers and $D X^{3}-\mid$ isolating switches are available in three frame sizes. Three breaking capacities for circuit breakers: 50 kA for the $\mathrm{DMX}^{3}-\mathrm{N}$ designation 65 kA for $D M X^{3}-\mathrm{H}$ and 100 kA for $\mathrm{DMX}^{3}-\mathrm{L}$.
| The range covers 10 rated currents, between 800 A and 6300 A . | All range of DMX ${ }^{3}$ air circuit breakers and $D X^{3}$-I isolating switches is available in fixed and draw-out version.

BREAKING CAPACITIES AND RATED CURRENTS

	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DMX ${ }^{3}-\mathrm{N}$	50 kA \| FIXED/DRAW-OUT									
DMX ${ }^{3}-\mathrm{H}$	65 kA \| FIXED/DRAW-OUT									
DMX ${ }^{\text {- }}$ -	100 kA \| FIXED/DRAW-OUT								100 kA \| F/D-0	

OVERAL DIMENSIONS AND WEIGHT						
Fixed version						
		Height	Depth	Width	Weight ${ }^{(1)}$	
FRAME 1: DMX3-N 2500 DMX3-H 2500	3P	419 mm	354 mm	273 mm	41 kg	
	4P	419 mm	354 mm	358 mm	48 kg	
FRAME 2: DMX3-L 2500 DMX3-N/H/L 4000	3P	419 mm	354 mm	408 mm	59 kg	
	4P	419 mm	354 mm	538 mm	76 kg	
FRAME 3: DMX3-L 6300	3P	419 mm	354 mm	797 mm	118 kg	
	4P	419 mm	354 mm	1064 mm	152 kg	
Draw-out version						
		Height	Depth	Width	Weight ${ }^{(1)}$	
FRAME 1: DMX3-N 2500 DMX3-H 2500	3P	465 mm	433 mm	327 mm	77 kg	
	4P	465 mm	433 mm	412 mm	94 kg	
FRAME 2:	3P	465 mm	433 mm	425 mm	108 kg	
4000	4P	465 mm	433 mm	555 mm	137 kg	
FRAME 3: DMX3-L 6300	3P	465 mm	433 mm	804 mm	216 kg	
	4P	465 mm	433 mm	1064 mm	274 kg	

(1) For trip-free switches, please consult us

LEGRAND ADVANTAGE
The overal dimensions of the breaker contribute considerably to an efficient use of the space inside the electrical panel. The constant depth for all the rated currents facilitates connection of the busbars.

OTHER ELECTRICAL FEATURES

Rated operational voltage Ue: $690 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ Rated insulation voltage Ui: $1000 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ Rated impulse withstand voltage Uimp: 12 kV Category of use: B

Ambient temperature: $-5^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Humidity: $+55^{\circ} \mathrm{C}$ with relative humidity of 95%, conforms to IEC 68-2-30

Precise \& user friendly LCD tripping units

| Besides their easy mounting and connection, strength and good continuity of operation, 3 types of electronic units allow precise adjustment of different limits for current values and time delay. The result is an efficient protection against electrical faults while maintaining total discrimination with downstream breakers.
I The LCD display lets you monitor the measured current values and informs you on fault adjustement and log (the cause of last trip and maintenance operations).

The following settings are adjusted

 using rotary selector switches:- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Instantaneous protection against very high short circuits: li
- Neutral protection: IN

MP4 LSI ELECTRONIC PROTECTION UNIT CAT. Nº 28801

The following settings are adjusted using rotary selector switches:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: Ii
- Neutral protection: IN

MP4 LSIg ELECTRONIC PROTECTION UNIT CAT. N ${ }^{\circ} 28802$

The following settings are adjusted

 using rotary selector switches:- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Earth fault current: Ig
- Time delay on earth fault tripping: tg

- Neutral protection: IN

LEGRAND ADVANTAGE

All protection units are equipped with batteries so you can monitor the parameters even when the breaker is not connected.

INFORMATION

All DMX3 breakers are factory equipped with any MP4 protection unit LI, LSI or LSIg according to your requirements. You just need to select and indicate the 2 catalogue numbers when placing the order (1 for the breaker and 1 for the tripping unit).

Ds indicating correct operation, pre-alarm and alarm for overload and temperature

Innovative \& user friendly touch screen tripping units

| MP6 electronic protection units are equipped with a colour touch screen, particularly user friendly, thanks to intuitive icon-based navigation system. The colour display provides a clear presentation of the parameters of the installation.
| Touch screen protection units integrate all the functions of LCD tripping units and have an advanced measurement function which, in addition to monitoring currents, can also be used to display voltages, active and reactive powers, frequency, power factor, and also energy.
| Alarms can be programmed on a number of these parameters: max. voltage, min. voltage, voltage imbalance, max. and min. frequency, etc.

The following settings are adjusted using the touch screen:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Neutral protection: \mathbf{N}

Tripping curve preview

MP6 LSIG TOUCH SCREEN PROTECTION UNIT CAT.NO 28804

The following settings are adjusted using the touch screen:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Earth fault current: Ig
- Time delay on earth fault tripping: tg
- Neutral protection: \mathbf{N}

Earth fault tripping curve preview

LEGRAND ADVANTAGE

The icon-based interface of the management software and the innovative touch screen technology used for MP6 tripping units simplify setting and preparing operations of the DMX ${ }^{3}$ circuit breaker.

INFORMATION

The MP4 and MP6 electronic protection units can communicate via an RS-485 port.
This port is used for remote monitoring and management of the devices in the installation, using the MODBUS protocol. It is therefore possible to control circuit breaker opening and closing,

This menu displays the values of I_{1}, I_{2}, I_{3} and I_{N} as a diagram, the date and the hour, and the alarm icon.
If the breaker opens following an electrical fault a specific icon will appear on the upper part of the screen.
Pressing this icon will open a new window showing the cause of the last event.
Other possible actions:

- Right arrow icon: access the main menu
- Alarm icon: preview the cause of the alarm in course

MAIN MENU

The main menu allows accessing different windows for setting different parameters of the breaker or previewing measured values, battery status, tripping history, etc.
The following accesses are possible:
1 Setting according to the tripping curves (current and time)
2 Access tripping unit settings (luminosity, contrast and sound volume)
3 Access to general information of the breaker
4 Back to the previous page
5 Access measured values menu
6 Access archives
7 Preview battery charging status

Innovative \& user friendly touch screen tripping units (continued)

| MP6 electronic protection units collect all the useful information in 5 sections, each one easily reachable via the main menu in order to allow an efficient control. Navigation through these sections is very simple thanks to the arrows at the bottom of each page. | MP6 electronic protection units have an intuitive graphical interface. All useful information and selected settings are easy to understand and visible at a glance. For example current values can be visualized on the starting page thanks to a histogram. Different other settings can be simultaneously displayed on the "settings" screen in order to have a global view.

Vertical arrows allow scrolling between

 different electrical parameters:$\mathrm{li}, \mathrm{Im}, \mathrm{tm}, \mathrm{Ir}, \mathrm{tr}, \mathrm{Ig}, \mathrm{tg}$, etc.
Pressing horizontal icons gives access to corresponding windows allowing value settings. Each value can be increased/ decreased, validated or suppressed. The values need to be saved into memory at the end of the process, for each setting.

MEASURED VALUES MENU

This window allows previewing of measured values for:

- Currents
- Voltages (Ph / N and $\mathrm{Ph} / \mathrm{Ph}$)
- Active and reactive powers
- Power factor (total and per phase)
- Active and reactive energy
- Harmonics (for currents and voltages)

Pressing I, m, M and $\mathbf{a v g}$ icons at the bottom of the window will display respectively: instantaneous, minimum, maximum and average value of electrical parameters.

INFORMATION

- The following events and values are registered into memory and can be accessed via specific menu:
cause of the last event, event counter, events history with date and hour, alarms history with date and hour
- MP6 tripping units allow following application: logical selectivity, management of non priority loads, contact management (with Cat. No 288 12)
- MP6 tripping units allow following alarms: power reverse, current
imbalance, maximum and minimum voltage values U1N, U2N, U3N, maximum currents $11,12,13$, voltage imbalance (phaseneutral), inversed phase rotation, maximum and minimum frequency values.

Fast clipping control accessories

| You can remotely control the DMX3 thanks to its range of accessories: shunt trips, undervoltage releases, motor operators and closing coils.
| All the control accessories are simply clipped on to the front panel of the circuit breaker, which is especially configured in order to facilitate the clipping.
| Every type of accessory is compatible with its own location, in order to avoid any possible mistake.

All control accessories can be easily installed without any special tool and in a very short time. The installation is to be done on the front panel of the air circuit breaker. In that way, the separation between power and control circuits is guaranteed.

SHUNT TRIP

Shunt trips are devices used for the remote instantaneous opening of the air circuit breaker. They are generally controlled trough an N/O type contact. The actual offer of shunt trips proposes different supply voltages (from 24 V to 415 V), compatibles with AC and DC currents. The shunt trips are already equipped with a special fast connector, to be directly inserted into auxiliary contacts block. An auxiliary contact is connected in series with the coil, cutting off its power supply when the main poles are open.

Technical characteristics:

- Nominal voltage Un: $24 \mathrm{~V} \sim$ to $480 \mathrm{~V} \sim$ and from $24 \mathrm{~V}=$ - to $250 \mathrm{~V}=$
- Tolerance on nominal voltage:

70 to 110% Vn

- Maximum power consumption
(max.power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
- Continuous power: 5 VA~/5 W =
- Maximum opening time: 30 ms
- Insulation voltage: 2500 V 50 Hz for 1 min
- Endurance on pulse: surge proof

4 kV 1.2/50 $\mu \mathrm{s}$

CLOSING COILS

These coils are used for remotely controlling the closing of the power contacts of the circuit breaker. The springs of the circuit breaker are to be loaded prior to the action of the closing coils. They are controlled by an N/O type contact.

Technical characteristics:

- Nominal voltage Un: $24 \mathrm{~V} \sim$ to $480 \mathrm{~V} \sim$ and from $24 \mathrm{~V}=$ to $250 \mathrm{~V}=$
- Tolerance on nominal voltage:

70 to 110% Vn

- Maximum power consumption
(max. power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
- Continuous power: $5 \mathrm{VA} / 5 \mathrm{~W}=$
- Maximum closing time: 50 ms
- Insulation voltage: 2500 V 50 Hz for 1 min
- Endurance on pulse: surge proof

4 kV 1.2/50 $\mu \mathrm{s}$

Technical characteristics:

- Nominal voltage Un: 24 V~ to 480 V~ and from $24 \mathrm{~V}=$ to 250 V =
- Tolerance on nominal voltage:

85 to 110% Vn

- Maximum power consumption
(max.power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
- Continuous power: $5 \mathrm{VA} \sim / 5 \mathrm{~W}=$
- Opening time: 60 ms
- Insulation voltage: 2500 V 50 Hz for 1 min
- Endurance on pulse: surge proof
$4 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$

Motor operators, are used for remotely reloading the springs of the circuit breaker mechanism immediately after the device closes. The device can thus be re-closed almost immediately after an opening operation. To motorise a DMX3 it is necessary to add a release coil (undervoltage release or shunt trip) and a closing coil. If the supply voltage of the controls fails, it is still possible to reload the springs manually. Motor-driven controls have "limit switch" contacts which cut off the power supply of their motor after the springs have been reloaded. Motor operators are easy to mount, with only three screws.

Technical characteristics:

- Nominal voltage Un: from $24 \mathrm{~V} \sim$
to $480 \mathrm{~V} \sim$ and from $24 \mathrm{~V}=$ = to $250 \mathrm{~V}=$
- Tolerance on nominal voltage:

85 to 110% Vn

- Spring reloading time: 7s
- Maximum power consumption:

240 VA~/240 W =

- Starting current: 2 up to $3 \times \ln$ for about 80 ms
- Maximum cycle: $1 / \mathrm{min}$

SAFETY AND PADLOCKING ACCESSORIES FOR AN INCREASED SECURITY

The DMX^{3} circuit breakers draw-out types are delivered as standard with safety padlocking shutters preventing access to live terminals. They have a number of other safety devices, such as:

- Key-operated locks:

Main contacts open
Circuit breaker in draw-out position

- Padlocks for:

Main contacts open
Contact shutters closed (for draw-out position)

- Door locking in order to prevent the opening
of the electrical switchboard door when
the contacts of the ACB are closed.

Fixed version equipped with padlocking system

Draw-out version equipped with key-operated locks

Easy identification of control accessories

| Electrical auxiliaries are connected on the front panel on terminal blocks provided for this purpose. Accessories are identified on the front panel.
| As the cover has window, it is easy to ascertain, which devices are fitted on the circuit breaker.

FRONT PANEL CONNECTION TERMINAL BLOCK

The terminal block of DMX ${ }^{3}$ ACBs offers the possibility to connect a trip contact, up to 10 auxiliary contacts and diffrent other control and singalling functions

The type of rear terminals can be easily changed according to your needs.

The breaker is supplied with rear terminals for horizontal connection

REAR TERMINALS FOR FLAT CONNECTION

Frame 2:
3P: Cat. №. 28892
4P: Cat. №. 28893

Frame 3
3P: Cat. N°. 28892×2
4P: Cat. $N^{\circ} .28893 \times 2$

REAR TERMINALS FOR VERTICAL CONNECTION

This type of connection uses 2 accessories:
the previous rear terminals for flat connection,
which must be equipped with the vertical ones.

Frame 1:
3P: Cat. №. $28884+28882$ 4P: Cat. №. $28885+28883$

Frame 2 and $3^{(1)}$:
3P: Cat. N°. $28892+28894$
4P: Cat. $N^{\circ} .28893+28895$
(1) For frame 3 the quantity is multiplied by 2

SPREADERS

For any situation requiring a bigger width for a safe connection (i.e. aluminium bus bars).

Frame 1:

3 types of accessories

- For flat connection

3P: Cat. №. 28886
4P: Cat. N. 28887

- For vertical connection

3P: Cat. N. 28888
4P: Cat. №. 28889

- For horizontal connection

3P: Cat. N. 28890
4P: Cat. No. 28891

Connection: maximum adaptability

I The fixed version of $D M X^{3}$ is equipped with rear terminals for horizontal connection with bars.
| You can change connection type according to your needs.

DRAW-OUT VERSION-CHOOSE YOUR CONNECTION ACCESSORIES

Draw-out version of the DMX³ breakers is supplied with rear terminals for flat connection with bars. You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.

011ilitililililililim
he breaker is supplied with rear terminals for flat connection

2 TYPES OF FIXING

Reversible connector for vertical or

horizontal connection.

Frame 1:
3P: Cat. No. 28896
Frame 2:
3P: Cat. No. 28894
4P: Cat. No. 28895
Frame 3:
3P: Cat. No. 28894×2
4P: Cat. N°. 28895×2

FLAT CONNECTION USING THE REAR TERMINALS OF THE BREAKER

Connection: maximum adaptability (continued)

| The draw-out version is equipped with rear terminals for flat connection with bars.

Draw-out version of the DMX3 breakers is supplied with rear terminals for flat connection with bars.
You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.

CONNECTIONS: A FEW RECOMMENDATIONS !

Connections provide the electrical connection of equipment and are also responsible
for a considerable proportion of their heat dissipation.
Connections must never be under-sized.
Plates or terminals must be used over a maximum area.
Heat dissipation is encouraged by arranging the bars vertically. If an uneven number of bars is connected, place the higher number of bars on the upper part of the terminal.
Avoid bars running side by side: this causes poor heat dissipation and vibrations.
Place spacers between the bars to maintain a distance between them which
is at least equivalent to their thickness.

Continuity of service and increased safety

| Supply invertors answer the double need of continuity of service and greater safety (security). Traditionally used in hospitals, public buildings, industries with continuous manufacturing processes, airports and military applications, supply invertors become increasingly required for new applications such as telecommunications and computing treatment or in the management of energy sources, notably those say "renewable energies".

AUTOMATIC SUPPLY INVERTORS

All DMX ${ }^{3}$ air circuit breakers (fixed and draw-out version) can be fitted with an interlocking system which guarantees "mechanical safety" in the event of supply inversion. Interlocking is achieved using a cable system and interlocking units mounted on each circuit breaker. Every circuit breaker composing the supply invertor must be equipped with one interlocking unit.
This system allows devices of different sizes and types (3P, 4P, fixed, draw-out) to be interlocked. DMX3 devices can be installed in different configurations inside the enclosure.
This mechanical interlocking system can be supplemented by motorised operators and an automation control unit making the invertor fully automatic.
The Legrand automatic control unit Cat. ${ }^{\circ} 26193$ allows to easily manage the automatic switching of two sources.
Controlled by a microprocessor, the unit is fully programmable. All the parameters are adjustable: values of the thresholds of tension, temporization between switching, starting up of a generator ...

Control panel of a supply invertor with automation control unit Cat. $N^{\circ} 26193$

Example of algorithm for the functioning of an automatic supply invertor

Thanks to its digital displays and different LEDs is possible to watch permanently the state of the invertor, as well as the presence and the value of the voltage on each power supply.

The two DMX³ devices (D1 and D2) are connected to a central common busbar. Since they are not simultaneously on-load, they can be in the same enclosure.

STAND-BY POWER SUPPLY (WITH LOAD SHEDDING)

The two DMX ${ }^{3}$ devices (D1 and D2) are not on-load simultaneously and can therefore be installed in the same enclosure. D3 can be on-load at the same time as D1, and must be installed in another enclosure.

Flexible configurations (Examples of supply invertors)

| Supply invertor assures the following functions:

- Switching between a main source and a secondary source in order to supply the circuits requiring continuous service (for safety reasons) or for energy saving purpose (when the secondary source is different from the network).
- Management of the functioning of the secondary source (power generator) supplying the safety circuits.

The two DMX ${ }^{3}$ devices (D1 and D2) draw current on a common busbar. They can only be installed in the same enclosure if the sum of their currents does not exceed the permissible value for the recommended size.

DUAL POWER SUPPLY (REDUCED POWER WITH PRIORITY LOADS)

Flexible configurations (Examples of supply invertors) (continued)

I $D M X^{3}$ and $D M X^{3}$-I devices can be fitted with an interlocking mechanism which guarantees "mechanical safety" in the event of supply inversion.
I Interlocking is achieved using interlocking units mounted on the side of the devices and a cable system.

MECHANICAL INTERLOCK FOR 2 CIRCUIT BREAKERS

D1 is used for the main power supply of the installation (normal functioning), D2 for emergency power supply via power generator (in case of mains fault). For this configuration the two breakers can be simultaneously open, but can not be closed in the same time.

D1	D2
0	0
1	0
0	1

$0=$ circuit breaker is open
$1=$ circuit breaker is closed

MECHANICAL INTERLOCK FOR 3 CIRCUIT BREAKERS

The three $D M X^{3}$ circuit breakers are connected to one common busbar. D1 and D2 breakers are supplying the energy from two different power transformers and D3 from a power generator (in case of emergency). For this configuration all the three breakers can be simultaneously open. At any time, only one single circuit breaker can be on-load. The following table presents all possible combinations of mechanical interlock of the 3 breakers.

The following example presents three circuit breakers with double mechanical interlock for D2 circuit breaker. D1 and D3 breakers are supplying the electricity form 2 power transformers. There are 6 interlocking combinations possible.

The following example presents three circuit breakers with double mechanical interlock for D2 circuit breaker. It is a possible version of the previous scheme, presenting four combinations. D1 and D3 breakers supply energy for independent circuits. D2 breaker is used in case of emergency for priority circuits.

Easy to install mechanical interlock system

(The choice of cable for mechanical interlock)

| Mechanical interlock is set up using cables and a mechanical interlock device and can interlock
2 or 3 devices, which may be different type in a vertical or horizontal configuration.
I The interlock device is mounted on the right-hand side of the air circuit breaker.

CABLE LENGTH SELECTION TABLE		
Length (mm)	Type	Cat. N ${ }^{\circ}$
2600	1	$\mathbf{2 8 9} \mathbf{2 0}$
3000	2	$\mathbf{2 8 9} \mathbf{2 1}$
3600	3	$\mathbf{2 8 9} 22$
4000	4	$\mathbf{2 8 9 2 3}$
4600	5	$\mathbf{2 8 9} \mathbf{2 4}$
5600	6	$\mathbf{2 8 9} \mathbf{2 5}$

2 DMX ${ }^{3}$ - HORIZONTAL CONFIGURATION

Required cable length: $L=1430+H$

3 DMX ${ }^{3}$ - VERTICAL + HORIZONTAL CONFIGURATION

Required cable length:
$L=1570+V$

EXAMPLES FOR 3 AIR CIRCUIT BREAKERS

Distance between air circuit breakers (mm)	Horizontal				
	Vertical	$\mathbf{8 0 0} \mathrm{mm}$	Type 2	1000 mm	1450 mm
	1000 mm	Type 3	Type 3	Type 4	Type 5
	1600 mm	Type 4	Type 3	Type 4	Type 5
	2000 mm	Type 5	Type 5	Type 5	Type 6

Be free to choose XL³ fully adaptable enclosure

It is very easy to create the configuration you want thanks to the different available sizes of $\mathrm{XL}^{3} 4000$ enclosures: 2 widths, 3 depths, and 2 heights. | A full range of accessories, such as dedicated fixing plates and faceplates, facilitates the integration of DMX^{3} devices inside XL^{3} enclosures.

INTEGRATION INTO XL ${ }^{3} 4000$ ENCLOSURES

	FRAME 1 DMX ${ }^{3} 2500$		FRAME 2 DMX ${ }^{3} 2500$ AND DMX ${ }^{3} 4000$	
	3P	4P	3P	$4 P^{(1)}$
	FIXED OR DRAW-OUT		FIXED OR DRAW-OUT	
XL ${ }^{3} 4000$ 24 MODULES USABLE WIDTH 600 MM				
	Depth of enclosures: 725 or 975 mm		Depth of enclosures: 725 or 975 mm up to 2500 A 975 mm up to 4000 A	

${ }^{(1)}$ Except supply invertors

	FRAME 1 DMX ${ }^{3} 2500$		FRAME 2 DMX ${ }^{3} 2500$ AND DMX ${ }^{3} 4000$	
	3P	4P	3P	4P
	FIXED OR DRAW-OUT		FIXED OR DRAW-OUT	
XL ${ }^{3} 4000$ 36 MODULES USABLE WIDTH 850 MM				
	Depth of enclosures: 725 or 975 mm		Depth of enclosures: 725 or 975 mm up to 2500 A 975 mm up to 4000 A	

LEGRAND ADVANTAGE

Optimized space and reduced width of main distribution board:
XL ${ }^{3}$ 4000-600 mm width enclosures can be equipped with frame 2 air circuit breakers
thanks to their compact size.
The correct size for the enclosure, and thus the power to be dissipated, is obtained by adapting the depth of the assembly:

- 725 mm min. up to 2500 A
- 975 mm min. up to 4000 A

DMX ${ }^{3}$ DRAW-OUT VERSION

Be free to choose XL³ fully adaptable enclosure (continued)

| DMX ${ }^{3}$ circuit breakers and switches are mounted on horizontal plates.
| Four different plates are available for fixed version or draw-out version of the breaker and for 24 modules (width 600 mm) and 36 modules (width 850 mm) XL ${ }^{3} 4000$ enclosures. They consist of a horizontal plate and a strengthening crosspiece.

FIXING PLATES SELECTION CHART

DMX ${ }^{3}$ devices are placed on the plate and fixed using screws and nuts.
The use of lifting equipment is strongly recommended for placing DMX^{3} devices on the plate.

Version		DMX ${ }^{3}$ fixed version		DMX ${ }^{3}$ draw-out version	
$\begin{aligned} & \text { XL}^{3} 4000 \\ & \text { enclosure type } \end{aligned}$		24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)	24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)
$\begin{aligned} & D M X^{3}-N 2500 \\ & D M X^{3}-H 2500 \\ & D M X^{3}-L 2500 \\ & D M X^{3}-I 2500 \end{aligned}$	3P 48	20751	20752	20753	20754
$\begin{aligned} & \text { DMX }{ }^{3} \text { N } 4000 \\ & D M X^{3}-H 4000 \\ & D M X^{3}-L 4000 \\ & D M X^{3}-14000 \end{aligned}$	$3 P$ $4 P$				

FACEPLATES SELECTION CHART

All XL³ 4000 metallic faceplates are equipped with hinges and locks
in order to facilitate installation and maintenance operations.

Version		DMX ${ }^{3}$ fixed version		DMX ${ }^{3}$ draw-out version	
$X^{3} 4000$ enclosure type		24 modules 1600 mm width)	36 modules (850 mm width)	24 modules $(600 \mathrm{~mm}$ width)	36 modules (850 mm width)
$\begin{aligned} & D M X^{3}-N 2500 \\ & D M X^{3}-H 2500 \\ & D M X^{3}-12500 \end{aligned}$	3P 4 P	20938	20948	20938	20948
DMX ${ }^{3}$ - L 2500	3P	20938		20938	
	4P	20939		20939	
$\begin{aligned} & D M X^{3}-N 4000 \\ & D M X^{3}-H 4000 \end{aligned}$	3P	20938		20938	
$\begin{aligned} & D M X^{3} \text { - L } 4000 \\ & \text { DMX }^{3}-14000 \end{aligned}$	4P	20939		20939	

17 legrand

trip free switches DMX ${ }^{3}$ from 1250 to 6300 A

028696

Dimensions p. $\mathbf{3 6}$ to $\mathbf{4 0}$

Pack	Cat.Nos	Fixed version
		Supplied with: - 4 auxiliary contacts: NO/NC - flat rear terminals for connection with bars - door sealing
	Frame 1	DMX ${ }^{3}$-I 2500
	3 P \| 4P	$\ln (\mathrm{A})$
1	028683028693	1250
1	028684028694	1600
1	028685028695	2000
1	$028686 \mid 028696$	2500
	Frame 2	DMX ${ }^{3}-14000$
1	$\begin{array}{c\|c} 3 P \\ 0 & 4 P \\ 086 & 87 \\ 0 & 286.97 \end{array}$	In (A) 3200
1	028688028698	4000
	Frame 3	DMX ${ }^{3} \mathbf{I} 6300$
	$3 P$ $4 P$ 028970 08971	In (A) 6300
1	0289701028971	6300

Draw-out version

Supplied with:

- 4 auxiliary contacts: NO/NC
- draw-out base and kit
- flat rear terminals for connection with bars - door sealing

DMX ${ }^{3}$-I 2500

0287840287941600
0287850287952000
$028786 \mid 0287962500$

$$
\begin{aligned}
& \text { Frame } 2 \quad \text { DMX }^{3} \text {-I } 4000 \\
& \begin{array}{c|c|c|}
3 P & 4 \mathrm{P} & \ln (\mathrm{~A}) \\
\hline
\end{array}
\end{aligned}
$$

0287870287973200
0287880287984000
Frame $3 \quad$ DMX³$^{3} \mathbf{I} 6300$
3P $4 \mathrm{P} \quad \ln (\mathrm{A})$
trip free switches $D M X^{3}-\|$
from 1250 to 6300A

Trip free switch DMX ${ }^{\text {3 }}$ -		2500	4000	6300
Frame		1	2	3
Rating In à $40^{\circ} \mathrm{C}(\mathrm{A})$		$\begin{aligned} & 1250 \\ & 1600 \\ & 2000 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{aligned} & 3200 \\ & 4000 \end{aligned}$	6300
Rated insulation voltage Ui (V)		1000	1000	1000
Rated impulse withstand voltage Uimp (kV)		12	12	12
Rated operational voltage ($50 / 60 \mathrm{~Hz}$) Ue (V)		690	690	690
Isolation behaviour		Yes	Yes	Yes
Short-circuit making capacity Icm (kA)	$230 \mathrm{~V} \sim$	143	220	220
	415 V	143	220	220
	$500 \mathrm{~V} \sim$	143	220	220
	$600 \mathrm{~V} \sim$	132	165	165
	690 V	121	143	143
Short time withstand current Icw (kA) pour $\mathrm{t}=1 \mathrm{~s}$	$230 \mathrm{~V} \sim$	65	85	100
	$415 \mathrm{~V} \sim$	65	85	100
	$500 \mathrm{~V} \sim$	65	85	100
	600 V	60	75	75
	690 V	55	65	65
Endurance (cycles)	mechanical	10000	10000	5000
	electrical	5000	5000	2500
Temperature	operation	$-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	storage	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

\square Temperature derating
Fixed version

	Temperature									
	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / /n	Imax (A)	Ir / In
$\begin{aligned} & \text { DMX }^{3}-1 \\ & 2500 \end{aligned}$	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1880	0.94
	2500	1	2450	0.98	2350	0.94	2250	0.9	2150	0.86
$\begin{aligned} & \text { DMX }^{3}-1 \\ & 4000 \end{aligned}$	3200	1	3200	1	3200	1	3136	0.98	3008	0.94
	4000	1	3920	0.98	3680	0.92	3440	0.86	3120	0.78
$\begin{aligned} & \text { DMX }^{3}-\mathrm{I} \\ & 6300 \end{aligned}$	6300	1	6300	1	6048	0.96	5796	0.92	5544	0.88

Draw-out version

	Temperature									
	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In
$\begin{aligned} & \text { DMX }^{3}-1 \\ & 2500 \end{aligned}$	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1875	0.94
	2500	1	2400	0.96	2250	0.9	2100	0.84	1950	0.78
$\begin{aligned} & \text { DMX }^{3}-1 \\ & 4000 \end{aligned}$	3200	1	3200	1	3200	1	3072	0.96	2880	0.9
	4000	1	3760	0.94	3440	0.86	3200	0.8	2960	0.74
$\begin{aligned} & \text { DMX }^{3}-1 \\ & 6300 \end{aligned}$	6300	1	6174	0.98	5985	0.95	5796	0.92	5292	0.84

auxiliaries and accessories for DMX ${ }^{3}$

Pack	Cat.Nos
1	028848
1	028849
1	028850
1	028851
1	028852
1	028855
1	028856
1	028857
1	028858
1	028859
1	028862
1	028863
1	028834
1	028835
1	028836
1	028837
1	028838
1	028841
1	028842
1	028843
1	028844
1	028816
1	028813

Control and signalling auxiliaries
Shunt trip
When energised the circuit breaker will be tripped
$02884948 \mathrm{~V} /$
028850 110-130 V/
$028851220-250 \mathrm{~V} /$
Undervoltage releases
When the coil is de-energised, the circuit breaker will be tripped
02885648 V/
028857 110-130 V/
58 220-250 V/
Module for delayed tripping
028820
028821
028824
028826

028815
To be used with above undervoltage releases 230 V/

Motor operators

orize a DMX, it is possible to attach, to the motor operators, a release coil (undervoltage or trip

Pack	Cat.Nos	Locking
		Key locking in "open" position

Profalux lock (key included) - to be fitted on the frame Cat. No 028828 Ronis lock (key included) - to be fitted on the frame Cat. No 028828
2 hole support frame for Ronis or Profalux locks Cat.Nos 0288 30/31 Set of 5 Ronis key barrels
Key locking in the draw-out position
Mounting of the lock on the base Profalux lock (key included) Ronis lock (key included)

Door locking

Prevents opening of the door with the circuit breaker closed Left-hand and right-hand side mounting

Padlocks in "open" position

Padlocking system for ACB (padlock not supplied)
Padlock for buttons
Padlocking system for shutters (padlock not supplied) energising) and a closing coil
$8 \mathrm{~V} /$
$10-130 \mathrm{~V} /$
-250 V/

Closing coils

Enables remote closing of the circuit breaker if the closing spring is charged
$48 \mathrm{~V} /$
110-130 V/

Signalling contact for auxiliaries

Signalling contact for shunt trips, undervoltage releases and closing coils
Signalling contact for draw-out version
Inserted / test / draw-out signalling contact
3 changeover contacts per position

1	028825
1	028823
1	028814
1	028815
1	028879

Accessories

Rating mis-insertion device Prevents the insertion of a draw-out circuit breaker in an incompatible base
Operations counter
Counts total number of operation cycles of the device
Contact "ready to close" with charged springs
Additional signalling contact
Lifting plate

L7 legrand

supply invertors equipment for $D M X^{3}$

Electrical characteristics p. 35

Pack	Cat.Nos	Automation control unit
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 026193 \\ & 026194 \end{aligned}$	For setting the conditions for supply inversion, generator on/off, status acquisition for DMX and DPX circuit-breakers, open/closed Power supply: $230 \mathrm{~V} \sim$ and $12-24-48 \mathrm{~V}=$ Connection by plug-in terminals Standard unit Communicating unit, enabling data transmission (RS 485 port)
1	$\begin{aligned} & 028864 \\ & 028865 \\ & 028866 \end{aligned}$	Equipment for supply invertors The mechanical interlock is set up using cables and can interlock 2 or 3 devices, which may be different type in a vertical or horizontal configuration The interlock unit is mounted on the right-hand side of the device Cable interlock to be ordered separately (cable lenght to be specified according to every configuration - see below) Interlock for DMX^{3} frame 1 Interlock for DMX^{3} frame 2 Interlock for DMX^{3} frame 3

Pack	Cat.Nos		Rear terminals
1 1	3P 028884 028882	$\left\lvert\, \begin{gathered} 4 \mathrm{P} \\ 028885 \\ 028883 \end{gathered}\right.$	For DMX ${ }^{3}$ frame 1 fixed version For flat connection with bars To be fixed onto horizontal rear terminals of the circuit breaker For vertical connection with bars Those terminals are used in order to transform a flat connection into a vertical one To be fixed onto Cat.Nos 0288 84/85 according to the number of poles
1	028896	028897	For DMX 3 frame 1 draw-out version For vertical or horizontal connection with bars To be fixed onto plate rear terminals of the circuit breaker
1	028892	028893	For DMX ${ }^{3}$ frame 2 and 3 fixed version For flat connection with bars To be fixed onto horizontal rear terminals of the circuit breaker 2 sets are required for frame 3
1	028894	028895	For DMX ${ }^{3}$ frame 2 and 3 fixed or draw-out version On DMX ${ }^{3}$ fixed version: - For vertical connection with bars - To be fixed onto Cat.Nos 0288 92/93 according to the number of poles On DMX ${ }^{3}$ draw-out version: - For vertical or horizontal connection with bars - To be fixed directly onto plate rear terminals of the circuit breaker 2 sets are required for frame 3
			Spreaders for DMX ${ }^{3}$ frame 1 fixed version
	$3^{3 P}$	${ }_{0}^{4 P}$	To be fixed onto horizontal rear terminals of the circuit breaker
1	028886	028887	For flat connection with bars
1	028888	028889	For vertical connection with bars
1	028890	028891	For horizontal connection with bars

■ Choice of cable interlock

Calculation of cable length:
$\mathrm{L} 1=1430+\mathrm{H}$
$\mathrm{L} 2=1570+\mathrm{V}$
$L 3=1430+V+H$

Functions

Standard unit Cat.No 026193

Used to adjust and manage the source inversion operating conditions
(DMX ${ }^{3}$):

- Remote control (opening/closing) of MCBs
- Microprocessor output from unit (positive safety)
- Programmable I/O
- Voltage reading: 3-phase
phase-neutral
phase-phase
- Control (on/off) of generator set
- Indication of the state of the MCBs (open/closed/tripped)
- Source inversion blocked in the event of:
- Tripping of 1 or 2 devices
- If a draw-out ACB is not inserted in its base, as the open/close command of the unit is inoperative

Communicating unit Cat.No 026194

All the standard functions, plus:

- Maximum voltage reading
- Reading of phase rotation direction
- Frequency reading
- Communication: data transmission via the RS 485 port (Modbus protocol)

- Technical characteristics

$\begin{aligned} & \text { Power supply: } 187 \text { to } 264 \mathrm{~V} \sim \\ & 9 \text { to } 65 \mathrm{~V}=\end{aligned}$
Frequency: 45 to 65 Hz
Un: 80 to 690 V~
Control relay (1 and 4): 1 NO - $12 \mathrm{~A}-250 \mathrm{~V}$
1 NO-5A-250 V~
1 NO/NC-5A-250 V
Cable cross-section: 0.2 to $2.5 \mathrm{~mm}^{2}$
Dimensions (width x height x depth): $144 \times 144 \times 90 \mathrm{~mm}$
Protection: IP 20 at the rear
IP 41 at the front
IP 54 at the front with protective screen
Operating temperature: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

	Operating ranges
Main/secondary minimum voltage range	$70-98 \% \mathrm{Un}$
Main/secondary voltage absence range	$60-85 \% \mathrm{Un}$
Main/secondary minimum voltage delay	$0.1-900 \mathrm{~s}$
Main/secondary voltage absence delay	$0.1-30 \mathrm{~s}$
Generator operating delay	$0-900 \mathrm{~s}$
Main to secondary switching delay	$0.1-90 \mathrm{~s}$
Main line presence delay	$1-3600 \mathrm{~s}$
Secondary to main switching delay	$0.1-90 \mathrm{~s}$
Generator set stopping delay	$1-3600 \mathrm{~s}$

Dimensions and panel board faceplate cut-out

Lllegrand

DMX 2500 and DMX ${ }^{3}$-| 2500 - frame 1

dimensions

- Fixed version - frame 1

Overall dimensions

3P version

4P version

$A=$ fixing point on plate of enclosure

Rear terminals for vertical connection with bars
Cat.Nos 0288 82/83

Rear terminals for horizontal connection with bars

Spreaders for flat connection with bars Cat.Nos 0288 86/87

4P version

Spreaders for vertical connection with bars Cat.Nos 0288 88/89

Spreaders for horizontal connection with bars

DMX ${ }^{3} 2500$ and $D X^{3}$ - \| 2500 - frame 1

 dimensions (continued)Draw-out version - frame 1

Overall dimensions

A = fixing point on plate of enclosure

Rear terminals for flat connection with bars

3P version

4P version

47 legrand
DMX ${ }^{\mathbf{2}} \mathbf{2 5 0 0}$, DMX $^{\mathbf{3}}$-I 2500, DMX $^{3} 4000$ and DMX 3-| 4000 - frame 2 dimensions

Fixed version - frame 2

Overall dimensions

3P version

A = fixing point on plate of enclosure

Rear terminals

3P version

4P version

4P version

■ Draw-out version - frame 2

Overall dimensions

3P version

DMX ${ }^{\mathbf{2}} \mathbf{2 5 0 0}$, DMX 3-I 2500, DMX $^{3} 4000$ and DMX 3-| 4000 - frame 2 dimensions (continued)

Draw-out version - frame 2 (continued)

Rear terminals for flat connection with bars

 3P version

Rear terminals for horizontal connection with bars
Cat.Nos 0288 92/93

4P version

Rear terminals for vertical connection with bars
Cat.Nos 0288 92/93

4P version

L7 legrand

DMX ${ }^{3} 6300$ et DMX 3-I 6300 - frame 3 dimensions

- Fixed version - frame 3

■ Draw-out version - frame 3

Settings of the electronic protection units

MP4 LI

Ir, li, tr adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time

$\operatorname{tr}-$ at $6 \times \operatorname{Ir}$ ($4+4$ steps)
tr $=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5 s (MEM OFF)

- Instantaneous protection against very high short circuits
li from 2 to $15 \times \ln$ or Icw (9 steps) li $=2-3-4-5-6-8-10-12-15 \times$ In or Icw
- Neutral protection: IN = I-II-III-IV X Ir (0-50-100-100 \%)

MP4 LSI

Ir, tr, Im, tm, li adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors $(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time
$\operatorname{tr}-$ at $6 \times \operatorname{lr}(4+4$ steps $) \operatorname{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5 s (MEM OFF)
- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{Ir}(9$ steps) Im = 1.5-2-2.5-3-4-5-6-8-10 $\times \mathrm{Ir}$

- Short time delay protection operation time
tm from 0 to $0.3 \mathrm{~s}(4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ cost),
0.3-0.2-0.1-0.01 s ($\mathrm{I} 2 \mathrm{t}=$ cost)
- Instantaneous protection against very high short circuits
li from 2 to $15 x$ In or Icw (9 steps) li=off-2-3-4-6-8-10-12-15 x In or Icw
- Neutral protection: IN = I-II-III-IV $\times \operatorname{Ir}(0-50-100-100 \%)$

MP4 LSIg

Ir, tr, li, Ig, tg, Im, tm, adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps $)$ on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time
tr - at $6 \times \operatorname{lr}(4+4$ steps $) \operatorname{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON)
30-20-10-5 s (MEM OFF)
- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{Ir}(9$ steps) $\mathrm{Im}=1.5-2-2.5-3-4-5-6-8-10 \times \mathrm{Ir}$

- Short time delay protection operation time
tm from 0 to $0.3 \mathrm{~s}(4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ constant),
0.3-0.2-0.t01 s (I2t=constant)
- Instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) li = OFF-2-3-4-6-8-10-12-15 x In or Icw

- Earth fault current

\lg from 0.2 to $1 \times \ln (9$ steps) $\lg =0.2-0.3-0.4-0.5-0.6-0.7-0.8-1 \times \ln , O F F)$

- Time delay on earth fault tripping

tg from 0.1 to $1 \times \ln (4$ steps) $\mathrm{Tg}=0,1-0,2-0,5-1 \mathrm{~s}$ (both t=constant and |2t=constant)

- Neutral protection: IN = I-II-III-IV $\times \operatorname{Ir}(0-50-100-100 \%)$

MP6 LSI

Ir, tr, Im, tm, li adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln$ (7 steps) Ir $=0.4-0.5-0.6-0.7-0.8-0.9-1 \times \ln$

- Long delay protection operation time

$\operatorname{tr}-$ at $6 \times \operatorname{Ir}(4$ steps) $\mathrm{tr}=5-10-20-30 \mathrm{~s}$ (both MEM ON and MEM OFF)

- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{lr}$ (9 steps) Im = 1.5-2-2.5-3-4-5-6-8-10 xir

- Short time delay protection operation time
tm from 0.03 to 1 s (11 steps) $\mathrm{tm}=0.03-0.1-0.2-0.3-0.4-0.5-0.6-0.7-$ 0.8-09-1 s (both $\mathrm{t}=$ constant and $\mathrm{I} 2 \mathrm{t}=$ constant)
- Instantaneous protection against very high short circuits
li from 2 to $15 x$ In or Icw (9 steps) li=2-3-4-6-8-10-12-15 x In or Icw
- Neutral protection: IN =I-II-III-IV X Ir (0-50-100-100 \%)

MP6 LSIg

Ir, tr, li, Ig, tg, Im, tm, adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \mathrm{x} \ln$ (7 steps) $\operatorname{Ir}=0.4-0.5-0.6-0.7-0.8-0.9-1 \mathrm{x} \ln$

- Long delay protection operation time
tr - at $6 \times \operatorname{Ir}$ (4 steps) tr $=5-10-20-30 \mathrm{~s}$ (both MEM ON and MEM OFF)
- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{lr}(9$ steps) $\mathrm{Im}=1.5-2-2.5-3-4-5-6-8-10 \times \mathrm{Ir}$

- Short time delay protection operation time
tm from 0.03 to $1 \mathrm{~s}(11$ steps) $\mathrm{tm}=0.03-0.1-0.2-0.3-0.4-0.5-0.6-0.7-$
0.8-09-1 s (both $\mathrm{t}=$ constant and $\mathrm{I} 2 \mathrm{t}=$ constant)
- Instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) li=2-3-4-6-8-10-12-15 \times In or Icw
- Earth fault current

Ig from 0.2 to $1 \times \ln (9$ steps) $\lg =0.2-0.3-0.4-0.5-0.6-0.7-0.8-1 \times \ln , O F F$

- Time delay on earth fault tripping
tg from 0.1 to $1 \times \ln (4$ steps) $\operatorname{Tg}=0,1-0,2-0,5-1 \mathrm{~s}$ (both $t=$ constant and I2t=constant)
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

L 1 legrand

DMX ${ }^{3}$
tripping curves

■ Selective time-current tripping characteristic for MP4 and MP6 protection units

If short-circuit current is higher than Icw value or li is setted at Icw position, tripping time is equal to 30 ms
Ir $=$ long time setting current
$\mathrm{Tr}=$ long time delay
Im = short time setting current
Tm = short time delay
If $=$ istantaneous intervention current

- Ground fault tripping curve for LSIg protection unit

■ Pass-through specific energy characteristic
${ }^{12 t}\left(A^{2} s\right) \quad 10^{10}$

Icc (KA) = estimated short circuit symmetrical current (RMS value) $I^{2} t\left(A^{2} s\right)=$ pass-through specific energy

selectivity table

■ Selectivity in three-phase network 400 V ~

DMX3/DPX

Upstream	DMX ${ }^{3} 2500$						DMX ${ }^{3} 4000$		DMX ${ }^{3} \mathbf{6 3 0 0}$	
Downstream	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DPX 125 ${ }^{(1)}$	T	T	T	T	T	T	T	T	T	T
DPX 160 ${ }^{(1)}$	T	T	T	T	T	T	T	T	T	T
DPX 250 ER ${ }^{(1)}$	T	T	T	T	T	T	T	T	T	T
DPX 250 ${ }^{(1)}$ TM and electronic	T	T	T	T	T	T	T	T	T	T
DPX 630 ${ }^{(1)}$ TM and electronic	T	T	T	T	T	T	T	T	T	T
630 A	T	T	T	T	T	T	T	T	T	T
$\text { DPX } 1600^{(1)} \quad 800 \mathrm{~A}$		T	T	T	T	T	T	T	T	T
$\begin{array}{lr} \text { thermal } \\ \text { magnetic } & 1000 \mathrm{~A} \\ \hline \end{array}$			T	T	T	T	T	T	T	T
1250 A				T	T	T	T	T	T	T
630 A			T	T	T	T	T	T	T	T
800 A			T	T	T	T	T	T	T	T
DPX 1600 el electronic $\quad 1000 \mathrm{~A}$				T	T	T	T	T	T	T
1250 A				T	T	T	T	T	T	T
1600 A					T	T	T	T	T	T

(1) All breaking capacity

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

DMX ${ }^{3} /$ DMX 3

Upstream	DMX ${ }^{3}$									
Downstream	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
800 A	T	T	T	T	T	T	T	T	T	T
1000 A		T	T	T	T	T	T	T	T	T
1250 A			T	T	T	T	T	T	T	T
1250 A				T	T	T	T	T	T	T
1600 A					T	T	T	T	T	T
DMX ${ }^{3}$ 2000 A						T	T	T	T	T
2500 A							T	T	T	T
3200 A								T	T	T
4000 A									T	T
5000 A										T
6300 A										

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC
60947-2
Icu of downstream circuit breaker \leq Icu of upstream circuit breaker
Selectivity values are intended with protection unit properly adjusted

DMX³/DX

	DMX ${ }^{3}$									
	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DX ${ }^{3}$ 6000-10 kA	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3}$ 10000-16 kA	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3} 25 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3} 36 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3} 50 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC
60947-2
Icu of downstream circuit breaker \leq Icu of upstream circuit breaker
Selectivity values are intended with protection unit properly adjusted

17 legrand

DMX ${ }^{3}$
technical characteristics

- Technical characteristics

DMX ${ }^{3} 2500$

DMX ${ }^{3} 4000$

DMX ${ }^{3}$ according to IEC 60947-2		DMX ${ }^{3} 4000$					
		3200			4000		
		N	H	L	N	H	L
Number of poles		3P-4P			3P-4P		
Rating In (A)		3200			4000		
Rated insulation voltage Ui (V)		1000			1000		
Rated impulse withstand voltage Uimp (kV)		12			12		
Rated operational voltage ($50 / 60 \mathrm{~Hz}$) Ue (V)		690			690		
Frame		2			2		
Ultimate breaking capacity Icu (kA)	$230 \mathrm{~V} \sim$	50	65	100	50	65	100
	$415 \mathrm{~V} \sim$	50	65	100	50	65	100
	$500 \mathrm{~V} \sim$	50	65	100	50	65	100
	$600 \mathrm{~V} \sim$	50	60	75	50	60	75
	$690 \mathrm{~V} \sim$	50	55	65	50	55	65
Service breaking capacity Ics (\% Icu)		100	100	100	100	100	100
Short-circuit making capacity Icm (kA)	$230 \mathrm{~V} \sim$	105	143	220	105	143	220
	$415 \mathrm{~V} \sim$	105	143	220	105	143	220
	$500 \mathrm{~V} \sim$	105	143	220	105	143	220
	$600 \mathrm{~V} \sim$	105	132	165	105	132	165
	$690 \mathrm{~V} \sim$	105	121	143	105	121	143
Short time withstand current Icw (kA) for $t=1 \mathrm{~s}$	$230 \mathrm{~V} \sim$	50	65	85	50	65	85
	$415 \mathrm{~V} \sim$	50	65	85	50	65	85
	$500 \mathrm{~V} \sim$	50	65	85	50	65	85
	$600 \mathrm{~V} \sim$	50	60	75	50	60	75
	$690 \mathrm{~V} \sim$	50	55	65	50	55	65
Category of use		B			B		
Isolation behavior		Yes			Yes		
Endurance (cycles)	mechanical	10000			10000		
	electrical	5000			5000		

DMX ${ }^{3} 6300$

DMX ${ }^{3}$ according to IEC 60947-2		DMX ${ }^{3} 6300$	
		5000	6300
		L	L
Number of poles		3P-4P	3P-4P
Rating In (A)		5000	5000
Rated insulation voltage Ui (V)		1000	1000
Rated impulse withstand voltage Uimp (kV)		12	12
Rated operational voltage ($50 / 60 \mathrm{~Hz}$) Ue (V)		690	690
Frame		3	3
Ultimate breaking capacity Icu (kA)	$230 \mathrm{~V} \sim$	100	100
	$415 \mathrm{~V} \sim$	100	100
	$500 \mathrm{~V} \sim$	100	100
	$600 \mathrm{~V} \sim$	75	75
	$690 \mathrm{~V} \sim$	65	65
Service breaking capacity Ics (\% Icu)		100	100
Short-circuit making capacity Icm (kA)	$230 \mathrm{~V} \sim$	220	220
	$415 \mathrm{~V} \sim$	220	220
	$500 \mathrm{~V} \sim$	220	220
	$600 \mathrm{~V} \sim$	165	165
	$690 \mathrm{~V} \sim$	143	143
Short time withstand current Icw (kA) for $t=1 \mathrm{~s}$	$230 \mathrm{~V} \sim$	100	100
	$415 \mathrm{~V} \sim$	100	100
	$500 \mathrm{~V} \sim$	100	100
	$600 \mathrm{~V} \sim$	75	75
	690 V	65	65
Category of use		B	B
Isolation behavior		Yes	Yes
Endurance (cycles)	mechanical	5000	5000
	electrical	2500	2500

- Temperature derating

Fixed version

Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\boldsymbol{I m a x}(\mathrm{A})$	Ir / In	$\operatorname{Imax}(\mathrm{A})$	Ir / In	$\boldsymbol{I m a x}(\mathrm{A})$	Ir / In	Imax (A)	lr / ln	$\boldsymbol{I m a x}(\mathrm{A})$	Ir / In
DMX ${ }^{3} 2500$	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1880	0.94
	2500	1	2450	0.98	2350	0.94	2250	0.9	2150	0.86
DMX ${ }^{3} 4000$	3200	1	3200	1	3200	1	3136	0.98	3008	0.94
	4000	1	3920	0.98	3680	0.92	3440	0.86	3120	0.78
DMX ${ }^{3} 6300$	5000	1	5000	1	5000	1	5000	1	5000	1
	6300	1	6300	1	6048	0.96	5796	0.92	5544	0.88

Draw-out version

Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\operatorname{Imax}(\mathrm{A})$	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	$\operatorname{Imax}(\mathrm{A})$	Ir / In
DMX ${ }^{3} 2500$	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1875	0.94
	2500	1	2400	0.96	2250	0.9	2100	0.84	1950	0.78
DMX ${ }^{3} 4000$	3200	1	3200	1	3200	1	3072	0.96	2880	0.9
	4000	1	3760	0.94	3440	0.86	3200	0.8	2960	0.74
DMX ${ }^{3} 6300$	5000	1	5000	1	5000	1	5000	1	5000	1
	6300	1	6174	0.98	5985	0.95	5796	0.92	5292	0.84

\square Derating at different altitudes

Air circuit breaker	DMX $^{\mathbf{2} 2500}$ DMX $^{\mathbf{3}} \mathbf{4 0 0 0}$ and DMX ${ }^{\mathbf{3}} \mathbf{6 3 0 0}$			
Altitude H (m)	<2000	3000	4000	5000
Rated current (at $\left.\mathbf{4 0 ^ { \circ }} \mathbf{C}\right) \ln (\mathbf{A})$	\ln	$0.98 \times \ln$	$0.94 \times \ln$	$0.90 \times \ln$
Rated voltage Ue (V)	690	600	500	440
Rated insulation voltage Ui (V)	1000	900	750	600

■ Minimum recommended dimension of busbars per pole

Frame 1 - fixed and draw-out versions

In (A)	Vertical bars (mm)	Horizontal bars (mm)
$\mathbf{6 3 0}$	50×10	60×10
$\mathbf{8 0 0}$	60×10	60×10
$\mathbf{1 0 0 0}$	80×10	80×10
$\mathbf{1 2 5 0}$	80×10	$2 \times 60 \times 10$
$\mathbf{1 6 0 0}$	$2 \times 60 \times 10$	$2 \times 80 \times 10$
$\mathbf{2 0 0 0}$	$2 \times 80 \times 10$	$3 \times 80 \times 10$
$\mathbf{2 5 0 0}$	$3 \times 80 \times 10$	$3 \times 80 \times 10$

Frame 2 - fixed and draw-out versions

In (A)	Vertical bars (mm)	Horizontal bars (mm)
$\mathbf{6 3 0}$	$1 \times 40 \times 10$ or $2 \times 40 \times 5$	$2 \times 40 \times 5$
$\mathbf{8 0 0}$	$1 \times 50 \times 10$ or $2 \times 50 \times 5$	$2 \times 50 \times 5$
$\mathbf{1 0 0 0}$	$1 \times 50 \times 10$ or $2 \times 50 \times 5$	$2 \times 50 \times 5$
$\mathbf{1 2 5 0}$	$2 \times 50 \times 5$	$1 \times 50 \times 10+1 \times 50 \times 5$
$\mathbf{1 6 0 0}$	$1 \times 50 \times 10+1 \times 50 \times 5$	$2 \times 50 \times 10$
$\mathbf{2 0 0 0}$	$2 \times 50 \times 10$	$2 \times 60 \times 10$
$\mathbf{2 5 0 0}$	$3 \times 50 \times 10$	$3 \times 60 \times 10$
$\mathbf{3 2 0 0}$	$3 \times 100 \times 10$	$3 \times 100 \times 10$
$\mathbf{4 0 0 0}$	$4 \times 100 \times 10$	$5 \times 100 \times 10$

Frame 3 - fixed and draw-out versions

$\boldsymbol{\operatorname { l n } (\mathbf { A })}$	Vertical bars (mm)	Horizontal bars (mm)
$\mathbf{5 0 0 0}$	$6 \times 100 \times 10$	$6 \times 100 \times 10$
$\mathbf{6 3 0 0}$	$7 \times 100 \times 10$	$7 \times 100 \times 10$

Note: The tables presenting the minimum recommended dimensions of connection plates and bars per pole should be used solely as a general guideline for selecting products. Due to extensive variety of switchgear constructions shapes and conditions that can affect the behavior of the apparatus, the solution used must always be verified

